

Chapter 8: Subnetting IP Networks

CCNA Routing and Switching

Introduction to Networks v6.0

Chapter 8 - Sections & Objectives

- 8.1 Subnetting an IPv4 Network
 - Implement an IPv4 addressing scheme to enable end-to-end connectivity in a small to medium-sized business network.
 - Explain how subnetting segments a network to enable better communication.
 - Explain how to calculate IPv4 subnets for a /24 prefix.
 - Explain how to calculate IPv4 subnets for a /16 and /8 prefix.
 - Given a set of requirements for subnetting, implement an IPv4 addressing scheme.
 - Explain how to create a flexible addressing scheme using variable length subnet masking (VLSM).
- 8.2 Addressing Schemes
 - Given a set of requirements, implement a VLSM addressing scheme to provide connectivity to end users in a small to medium-sized network.
 - Implement a VLSM addressing scheme.

Chapter 8 - Sections & Objectives (Cont.)

- 8.3 Address Schemes
 - Explain design considerations for implementing IPv6 in a business network.
 - Explain how to implement IPv6 address assignments in a business network.

8.1 Subnetting an IPv4 Network

Network Segmentation Broadcast Domains

- Devices use broadcasts in an Ethernet LAN to locate:
 - **Other devices** Address Resolution Protocol (ARP) which sends Layer 2 broadcasts to a known IPv4 address on the local network to discover the associated MAC address.
 - **Services –** Dynamic Host Configuration Protocol (DHCP) which sends broadcasts on the local network to locate a DHCP server.
- Switches propagate broadcasts out all interfaces except the interface on which it was received.

Network Segmentation Problems with Large Broadcast Domains

- Hosts can generate excessive broadcasts and negatively affect the network.
 - Slow network operations due to the significant amount of traffic it can cause.
 - Slow device operations because a device must accept and process each broadcast packet.
- Solution: Reduce the size of the network to create smaller broadcast domains. These smaller network spaces are called *subnets*.

Network Segmentation Reasons for Subnetting

- Reduces overall network traffic and improves network performance.
- Enables an administrator to implement security policies such as which subnets are allowed or not allowed to communicate together.
 Communicating between

Subnetting an IPv4 Network Octet Boundaries

Networks	Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of hosts
are most easily subnetted at the	/8	255.0.0.0	nnnnnnn.hhhhhhh.hhhhhhhh.hhhhhhh 11111111.00000000.0000000.0000000000	16,777,214
octet boundary of /8, /16,	/16	255.255.0.0	nnnnnnn.nnnnnn.hhhhhhh.hhhhhhh 1111111.1111111.00000000.00000000	65,534
and /24	/24	255.255.255.0	nnnnnnn.nnnnnnn.nnnnnn.hhhhhhh 1111111.1111111.1111111.00000000	254

- Prefix length and the subnet mask are different ways of identifying the network portion of an address.
- Subnets are created by borrowing host bits for network bits.
- More host bits borrowed, the more subnets that can be defined.

Subnetting an IPv4 Network Subnetting on the Octet Boundary

Subnet Address (256 Possible Subnets)	Host Range (65,534 possible hosts per subnet)	Broadcast
<u>10.0</u> .0.0/16	<u>10.0</u> .0.1 - <u>10.0</u> .255.254	<u>10.0</u> .255.255
<u>10.1</u> .0.0/16	<u>10.1</u> .0.1 - <u>10.1</u> .255.254	<u>10.1</u> .255.255
<u>10.2</u> .0.0/16	<u>10.2</u> .0.1 - <u>10.2</u> .255.254	<u>10.2</u> .255.255
<u>10.3</u> .0.0/16	<u>10.3</u> .0.1 - <u>10.3</u> .255.254	<u>10.3</u> .255.255
<u>10.4</u> .0.0/16	<u>10.4</u> .0.1 - <u>10.4</u> .255.254	<u>10.4</u> .255.255
<u>10.5</u> .0.0/16	<u>10.5</u> .0.1 - <u>10.5</u> .255.254	<u>10.5</u> .255.255
<u>10.6</u> .0.0/16	<u>10.6</u> .0.1 - <u>10.6</u> .255.254	<u>10.6</u> .255.255
<u>10.7</u> .0.0/16	<u>10.7</u> .0.1 - <u>10.7</u> .255.254	<u>10.7</u> .255.255
<u>10.255</u> .0.0/16	<u>10.255</u> .0.1 - <u>10.255</u> .255.254	<u>10.255</u> .255.255

Subnetting Network 10.x.0.0/16

Define up to 256 subnets with each subnet capable of connecting 65,534 hosts.

• First two octets identify the network portion while the last two octets are for host IP addresses.

Subnetting an IPv4 Network

Subnetting on the Octet Boundary (Cont.)

Subnet Address (65,536 Possible Subnets)	Host Range (254 possible hosts per subnet)	Broadcast
10.0.0/24	<u>10.0.0</u> .1 - <u>10.0.0</u> .254	<u>10.0.0</u> .255
<u>10.0.1</u> .0/24	<u>10.0.1</u> .1 - <u>10.0.1</u> .254	<u>10.0.1</u> .255
<u>10.0.2</u> .0/24	<u>10.0.2</u> .1 - <u>10.0.2</u> .254	<u>10.0.1</u> .255
<u>10.0.255</u> .0/24	<u>10.0.255</u> .1 - <u>10.0.255</u> .254	<u>10.0.255</u> .255
<u>10.1.0</u> .0/24	<u>10.1.0</u> .1 - <u>10.1.0</u> .254	<u>10.1.0</u> .255
<u>10.1.1</u> .0/24	<u>10.1.1</u> .1 - <u>10.1.1</u> .254	<u>1.1.1.0</u> .255
<u>10.1.2</u> .0/24	<u>10.1.2</u> .1 - <u>10.1.2</u> .254	<u>10.1.2.0</u> .255
<u>10.100.0</u> .0/24	<u>10.100.0</u> .1 - <u>10.100.0</u> .254	<u>10.100.0</u> .255
10.255.255.0/24	<u>10.255.255</u> .1 - <u>10.255.255</u> .254	10.255.255.255

- Subnetting Network 10.x.x.0/24
- Define 65,536 subnets each capable of connecting 254 hosts.
- /24 boundary is very popular in subnetting because of number of hosts.

Subnetting an IPv4 Network Classless Subnetting

Subnetting a /24 Network

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhhh 111111111.111111111.11111111.10000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnn.nnhhhhhh 111111111.111111111.11111111.11000000	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhhh 1111111111	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhh 111111111.111111111.11111111.11110000	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnn.nnnnnnnn.nnnnhhh 111111111.111111111.11111111.11111000	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnhh 1111111111	64	2

Subnets can borrow bits from any host bit position to create other masks.

Subnetting an IPv4 Network Video Demonstration – The Subnet Mask

Subnetting in Binary

- ANDING
 - Convert IP address and Subnet Mask to Binary (line up vertically like an addition problem)
 - Logically AND (1 and 1 = 1, all other combinations = 0)
 - Result is network address for original IP address
- Classful Subnetting
 - Class A /8 255.0.0.0
 - Class B /16 255.255.0.0
 - Class C /24 255.255.255.0

Subnetting an IPv4 Network Video Demonstration – The Subnet Mask (Cont.)

Subnetting 192.168.1.0/24

Subnetting 192.168.1.0/24

192	168	1		0		192	168	1	68
255	255	255	1	.28		255	255	255	128
11000000	10101000	0000001	000	00000		11000000	10101000	0000001	0100010
11111111	11111111	11111111	100	00000		11111111	11111111	11111111	1000000
N	N	N	SN	Н		11000000	10101000	0000001	0000000
						192	168	1	0
Cubnot bits	- 21 - 2				i.	103 169 1 0	/25	102 109 1	127 /25

Subnet bits = $2^{1} = 2$ Host bits = $2^{7} = 128 - 2 = 126$ Subnetworks = 2 192.168.1.0 /25 -----> 192.168.1.127 /25 192.168.1.128 /25 -----> 192.168.1.255 /25

Subnetting an IPv4 Network Video Demonstration – Subnetting with the Magic Number

- Magic number technique used to calculate subnets
- Magic number is simply the place value of the last one in the subnet mask

© 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 14

Subnetting an IPv4 Network

Video Demonstration – Subnetting with the Magic Number (Cont.)

The Magic Number is the last 1 in Binary

192	168	1	0
255	255	255	224
11000000	10101000	0000001	00000000
11111111	11111111	11111111	11100000
			Sn [™] H
The Magic N	umber is? 32	192.168.1.0/27 192.168.1.32/27 192.168.1.64/27	192.168.1.128 /27 192.168.1.160 /27 192.168.1.192 /27

Subnetting an IPv4 Network

Video Demonstration – Subnetting with the Magic Number (Cont.)

Subnetting 172.16.0.0/16>/23							
1	72	16	0	0			
2	55	255	254	0			
1010	01010	00010000	00000000	00000000			
1111	11111	11111111	1111 1110	00000000			
			Sn H	Н			
What is the magic number? 2 72 16 0 0 172 16 1 255 /23							
72.16.0.0 172.16.1.255 /23 72.16.2.0 /23							

uluilu cisco

Subnetting an IPv4 Network Classless Subnetting Example

Dotted Decimal Addresses

Subnetting an IPv4 Network Creating 2 Subnets

/25 Subnetting Topology

Rl(config)# interface gigabitethernet 0/0
Rl(config-if)# ip address 192.168.1.1 255.255.255.128
Rl(config-if)# exit
Rl(config)# interface gigabitethernet 0/1
Rl(config-if)# ip address 192.168.1.129 255.255.128

neral	
ou can get IP settings assigned ipports this capability. Otherwi fministrator for the appropriat	l automatically if your network ise, you need to ask your network e IP settings.
💮 Obtain an IP address autor	natically
Use the following IP address	55
IF address:	192.168.1.130
Subnet mask:	255 . 255 . 255 . 128
Default gateway:	192.168.1.129
Obtain DNS server address Use the following DNS server	i automatically
Preferred DNS server:	· · ·
Alternate DNS server:	
Validate settings upon ext	t Advanced

Subnetting an IPv4 Network Video Demonstration – Creating Two Equal-sized Subnets (/25)

Create 2 Equal-sized Subnets from 192.168.1.0 /24

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1
1	0	0	0	0	0	0	0

- Magic Number = 128
- 192.168.1.0 /25 (start at 0)
- 192.168.1.128 /25 (Add 128)

Subnetting an IPv4 Network Subnetting Formulas

Calculate Number of Subnets Formula

ululu cisco

Subnetting an IPv4 Network
Subnetting Formulas (Cont.)

Calculate Number of Hosts Formula

Calculating the Number of Hosts

Subnetting an IPv4 Network Creating 4 Subnets

/26 Subnetting Topology

Subnetting an IPv4 Network Creating 4 Subnets (Cont.)

/26 Subnetting Topology

ululu cisco

	Network	192.	168.	1.	00	00 000	192.168.1.0
Not 0	First	192.	168.	1.	00	00 000	192.168.1.1
net o	Last	192.	168.	1.	00	11 111	192.168.1.62
	Broadcast	192.	168.	1.	00	11 111	192.168.1.63
	Network	192.	168.	1.	01	00 000	192.168.1.64
Not 1	First	192.	168.	1.	01	00 000	192.168.1.65
INCL I	Last	192.	168.	1.	01	11 111	192.168.1.126
	Broadcast	192.	168.	1.	01	11 111	192.168.1.127
	Network	192.	168.	1.	10	00 000	192.168.1.128
Net 2	First	192.	168.	1.	10	00 000	192.168.1.129
net z	Last	192.	168.	1.	10	11 111	192.168.1.190
	Broadcast	192.	168.	1.	10	11 111	192.168.1.191

Cisco Confidential 23

Subnetting an IPv4 Network Creating 4 Subnets (Cont.)

/26 Subnetting Topology

uluilu cisco

Subnetting an IPv4 Network Video Demonstration – Creating Four Equal-sized Subnets (/26)

Create 4 Equal-sized Subnets from 192.168.1.0 /24

- 2^2 = 4 Subnets
- Magic Number = 64
- 192.168.1.0 /26
- 192.168.1.64 /26
- 192.168.1.128 /26
- 192.168.1.192/26

Subnetting an IPv4 Network Video Demonstration – Creating Eight Equal-sized Subnets (/27)

Create 8 Equal-sized Subnets from 192.168.1.0 /24

- Magic Number = 32
- 192.168.1.0 /27 (Start at 0)
- 192.168.1.32 /27 (Add 32 to previous network)
- 192.168.1.64 /27 (Add 32)
- 192.168.1.96 /27 (Add 32)
- 192.168.1.128 /27 (Add 32)
- 192.168.1.160 /27 (Add 32)
- 192.168.1.192 /27 (Add 32)
- 192.168.1.224 /27 (Add 32)

Subnetting a /16 and /8 Prefix

Creating Subnets with a /16 prefix

		Subnetting a /16 Network		
Prefix Length	Subnet Mask	Network Address (n = network, h = host)	# of subnets	# of hosts
/17	255.255.128.0	nnnnnnnnnnnnnnnnhhhhhhhhhhhhhhhh 11111111	2	32766
/18	255.255.192.0	nnnnnnnnnnnnnnnnnhhhhhhhhhhhhhhh 11111111	4	16382
/19	255.255.224.0	nnnnnnnnnnnnnnnnhhhhhhhhhhhhhhh 11111111	8	8190
/20	255.255.240.0	nnnnnnnnnnnnnnnnnhhhhhhhhhhhhhh 11111111	16	4094
/21	255.255.248.0	nnnnnnnnnnnnnnnnnnhhh.hhhhhhh 1111111111	32	2046
/22	255.255.252.0	nnnnnnn.nnnnnnn <mark>.nnnnnh</mark> h.hhhhhhh 11111111111111111111100.00000000	64	1022

uluilu cisco

d. Cisco Confidential 27

Subnetting a /16 and /8 Prefix Creating 100 Subnets with a /16 prefix

Subnetting a /16 and /8 Prefix Calculating the Hosts

ululu cisco

Address Range for 172.16.0.0/23 Subnet

Subnetting a /16 and /8 Prefix Video Demonstration – Creating One Hundred Equal-sized Subnets

- An enterprise network requires 100 equal-sized subnets starting from 172.16.0.0/16
 - New Subnet Mask
 - 11111111.1111111.1111110.00000000
 - 2^7 = 128 Subnets
 - $2^9 = 512$ hosts per subnet
 - Magic Number = 2
 - 172.16.<mark>0</mark>.0/23
 - 172.16.<mark>2</mark>.0/23
 - 172.16.<mark>4</mark>.0/23
 - 172.16.**6**.0/23
 - ...

ululu cisco

• 172.16.**254**.0/23

Subnetting a /16 and /8 Prefix Creating 1000 Subnets with a /8 Network

ululu cisco

Subnetting a /16 and /8 Prefix Creating 1000 Subnets with a /8 Network (Cont.)

Subnetting a /16 and /8 Prefix Video Demonstration – Subnetting Across Multiple Octets

The Magic Number is the last 1 in Binary							
10	0	0	0				
255	0	0	0				
00001010	00000000	00000000	0000000				
11111111	11100000	00000000	0000000				
	Sn H	Н	Н				
The Magic Number is? 32							
10.0.0/11 10.128.0.0/11							
10.32.0.0/11 10.160.0.0/11							
10.64.0.0/	10.64.0.0/11 10.192.0.0-10.223.255.255/						

10.96.0.0/11 10.224.0.0/11

ululu cisco

New Challenge Problem: Create over 300 Equal-sized Subnets of 20,000 Hosts each starting from 10.0.0/8

Subnetting to Meet Requirements Subnetting Based on Host Requirements

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnhhhhhh 11111111	2	126
/26	255.255.255.192	nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnhhhhhh 11111111	4	62
/27	255.255.255.224	nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnhhhhh 11111111	8	30
/28	255.255.255.240	nnnnnnnnnnnnnnnnnnnnnnnnnn <mark>nnnn</mark> hhhh 111111111111111111111111111111	16	14

Subnetting to Meet Requirements Subnetting Based On Network Requirements

Host devices used by employees in the Engineering department in one network and Management in a separate network.

Subnetting to Meet Requirements Network Requirement Example

CISCO

1410101100.00010000.00000011.10000000172.16.3.128/261510101100.00010000.00000011.11000000172.16.3.192/26

4 bits borrowed from host portion to create subnets

Subnetting to Meet Requirements Network Requirement Example (Cont.)

Benefits of Variable Length Subnet Masking Traditional Subnetting Wastes Addresses

Benefits of Variable Length Subnet Masking Variable Length Subnet Masks (VLSM)

Traditional

Subnets of Varying Sizes

Benefits of Variable Length Subnet Masking Basic VLSM

Basic Subnetting

Network portion

11000000.10101000.00010100

3 more bits borrowed from subnet 7

Host portion

00000

.111

Dotted Decimal

192.168.20.224/27

Benefits of Variable Length Subnet Masking Video Demonstration – VLSM Basics

- Basic VLSM
 - Subnets do not have to be equal sizes, as long as their address ranges do not overlap.
 - When creating subnets it is easier to work from larger to smaller.

Benefits of Variable Length Subnet Masking VLSM in Practice

uluilu cisco

Benefits of Variable Length Subnet Masking

VLSM Chart

VLSM Subnetting of 192.168.20.0/24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

	/30 Network	Hosts	
WAN R1-R2	.224	.225226	
WAN R2-R3	.228	.229230	
WAN R3-R4	.232	.233234	
Unused	.236	.237238	
Unused	.240	.241242	
Unused	.244	.245246	
Unused	.248	.249250	
Unused	.252	.253254	

Benefits of Variable Length Subnet Masking Video Demonstration – VLSM Example

- Given the network 172.16.0.0 /23 creates subnets:
 - 1 network for 200 hosts 256
 - 1 network for 100 hosts 128
 - 1 network for 50 hosts 64
 - 1 network for 25 hosts 32
 - 1 network for 10 hosts 16
 - 4 point-to-point networks for 2 hosts each – 4x4 = 16

/23 = 2^9 hosts = 512 256+128+64+32+16+16 = 512 hosts needed Address range 172.16.0.0 - 172.16.1.255

8.2 Addressing Schemes

Structured Design Network Address Planning

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

uluilu cisco

Structured Design Planning to Address the Network

- Each host in an internetwork must have a unique address.
- Need proper planning & documentation.
- Must provide & control access to servers from internal hosts and external hosts.
- Layer 3 STATIC address assigned to a server can be used to control access to that server.
- Monitoring security and performance of hosts means network traffic is examined for source IP addresses that are generating or receiving excessive packets.

Structured Design Assigning Addresses to Devices

Devices that require addresses:

End user clients •

- Can be set for DHCP to save time and manual errors.
- A change in the subnetting scheme requires reconfiguration of DHCP server. IPv6 clients | Network: 192.168.1.0/24 use DHCPv6/SLAAC.

Servers •

- Configured with static addresses. •
- Private addresses translated to public addresses if accessible from the Internet.

Intermediary devices ۰

Set with static addresses for remote management.

Gateway

Router interface used to exit the network. CISCO

Use	First	Last			
Host Devices	.1	.229			
Servers	.230	.239			
Printers	.240	.249			
Intermediary Devices	.250	.253			
Gateway (router LAN interface)	.254				

8.3 Design Considerations for IPv6

Subnetting an IPv6 Network The IPv6 Global Unicast Address

- IPv6 subnetting is not concerned with conserving address space.
- IPv6 subnetting is about building an addressing hierarchy based on the number of subnetworks needed.
- IPv6 link-local address is never subnetted.
- IPv6 global unicast address can be subnetted.
- IPv6 global unicast address normally consists of a /48 global routing prefix, a 16 bit subnet ID, and a 64 bit interface ID.

ululu cisco

Structure

Global Routing Prefix

This is the prefix, or network, portion of the address that is assigned by the provider. Typically, Regional Internet Registries (RIRs) assign a /48 global routing prefix to ISPs and customers.

Subnetting an IPv6 Network Subnetting Using the Subnet ID

Subnetting an IPv6 Network IPv6 Subnet Allocation

Address Block: 2001:0DB8:ACAD::/48

5 subnets allocated from 65,536 available subnets

2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64

2001:0DB8:ACAD:FFFF::/64

Rl (config) # interface gigabitethernet 0/0
Rl (config-if) # ipv6 address 2001:db8:acad:1::1/64
Rl (config-if) # exit
Rl (config) # interface gigabitethernet 0/1
Rl (config-if) # ipv6 address 2001:db8:acad:2::1/64
Rl (config) # interface serial 0/0/0
Rl (config-if) # ipv6 address 2001:db8:acad:3::1/64
Rl (config-if) # end
Rl#

8.4 Chapter Summary

Conclusion

Chapter 8: Subnetting IP Networks

- Implement an IPv4 addressing scheme to enable end-to-end connectivity in a small to mediumsized business network.
- Given a set of requirements, implement a VLSM addressing scheme to provide connectivity to end users in a small to medium-sized network.
- Explain design considerations for implementing IPv6 in a business network.

··II··II·· CISCO