

Cryptosystem

- A system to accomplish the encryption/decryption, user authentication, hashing, and key-exchange processes.
- A cryptosystem may use one of several different methods, depending on the policy intended for various user traffic situations.

Encryption / Decryption

- Encryption transforms information (clear text) into ciphertext which is not readable by unauthorized users.
- Decryption transforms ciphertext back into clear text making it readable by authorized users.
- · Popular encryption algorithms include:
- DES
- 3DES
- AES

Authentication / Hashing

- Guarantees message integrity by using an algorithm to convert a variable length message and shared secret key into a single fixed-length string.
- · Popular hashing methods include:
- SHA (Cisco default)
- MD5

Non-repudiation

- · Is the ability to prove a transaction occurred.
- Similar to a signed package received from a shipping company.
- This is very important in financial transactions and similar data transactions.

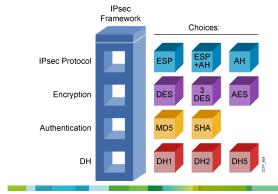
CIVIC Class and or is efficient. At algies weerend.

Diffie-Hellman Key Exchange

- How do the encrypting and decrypting devices get the shared secret key?
 - The easiest method is Diffie-Hellman public key exchange.
- Used to create a shared secret key without prior knowledge.
- This secret key is required by:
 - The encryption algorithm (DES, 3DES, AES)
 - The authentication method (MD5 and SHA-1)

Let's watch youtube...

• http://www.youtube.com/v/U62S8SchxX4


Pre-Shared Key

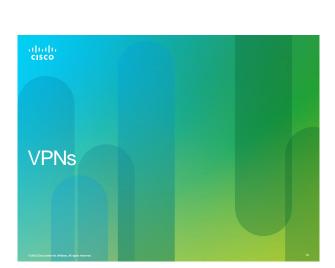
- Identifies a communicating party during a phase 1 IKE negotiation.
- The key must be pre-shared with another party before the peers routers can communicate.

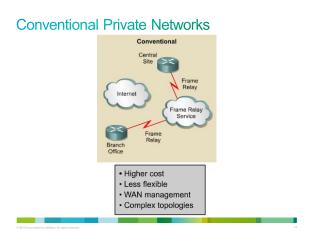
IPsec - Internet Protocol Security

- A "framework" of open standards developed by the IETF to create a secure tunnel at the network (IP) layer.
- It spells out the rules for secure communications.
- IPsec is not bound to any specific encryption or authentication algorithms, keying technology, or security algorithms.

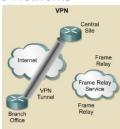
IPsec Protocol Framework

Crypto Map


- A Cisco IOS software configuration entity that performs two primary functions.
 - First, it selects data flows that need security processing.
 - Second, it defines the policy for these flows and the crypto peer that traffic needs to go to.
- · A crypto map is applied to an interface.


SA - Security Association

- Is a contract between two parties indicating what security parameters, such as keys and algorithms will be used.
- · A Security Parameter Index (SPI) identifies each established SA.


Cryptography Names

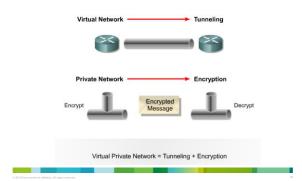
- · Alice and Bob
- Are commonly used placeholders in cryptography.
- Better than using Person A and Person B
- Generally Alice wants to send a message to Bob.
- · Carol or Charlie
- A third participant in communications.
- · Dave is a fourth participant, and so on alphabetically.
- Eve
- An eavesdropper, is usually a passive attacker.
- She can listen in on messages but cannot modify them.
- · Mallory or Marvin or Mallet
 - A malicious attacker which is more difficult to monitor.
- He/She can modify and substitute messages, replay old messages, etc.
- Walter
- A warden to guard Alice and Bob depending on protocol used.

Virtual Private Networks

- Lower cost
- More flexible
- Simpler management
- Tunnel topology

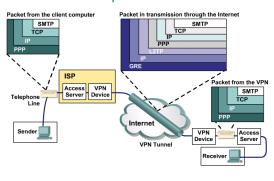
VPNs

- A Virtual Private Network (VPN) provides the same network connectivity for remote users over a public infrastructure as they would have over a private network.
- VPN services for network connectivity include:
 - Authentication
 - Data integrity
 - Confidentiality


Characteristics of VPNs

Characteristic	Purpose
Authentication	Ensures that only authorized senders and devices enter the network
Data confidentiality	Protects data from eavesdroppers (spoofing)
Data integrity	Guarantees that no tampering or alterations occur

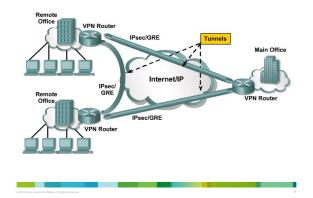
VPN Concepts

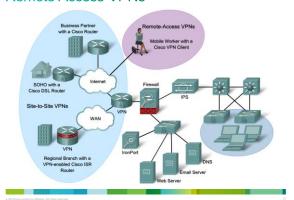

• A secure VPN is a combination of concepts:


VPN Packet Encapsulation

- Carrier protocol:
- The protocol over which the information is traveling (Frame Relay, ATM, MPLS)
 Encapsulating protocol:
- The protocol that is wrapped around the original data (GRE, IPsec, L2F, PPTP, L2TP)
 Passenger protocol:
 The protocol over which the original data was being carried (IPX, AppleTalk, IPv4, IPv6)

VPN Packet Encapsulation



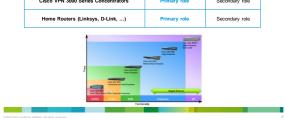

Two Types of VPNs

- · Site-to-Site VPNs:
- Intranet VPNs connect corporate headquarters, remote offices, and branch offices over a public infrastructure.
- Extranet VPNs link customers, suppliers, partners, or communities of interest to a corporate Intranet over a public infrastructure.
- · Remote Access VPNs:
- Which securely connect remote users, such as mobile users and telecommuters, to the enterprise.

Site-to-Site VPNs

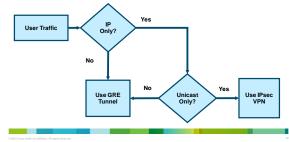
Remote Access VPNs

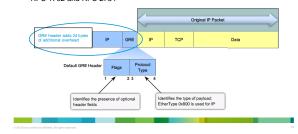
Remote Access VPNs



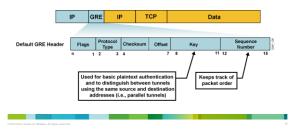
Remote Access VPNs

Cisco VPN Product Line


Product Choice	Remote-Access VPN	Site-to-Site VPN
Cisco VPN-Enabled Router	Secondary role	Primary role
Cisco PIX 500 Series Security Appliances (Legacy)	Secondary role	Primary role
Cisco ASA 5500 Adaptive Security Appliances	Primary role	Secondary role
Cisco VPN 3000 Series Concentrators	Primary role	Secondary role
Home Routers (Linksys, D-Link,)	Primary role	Secondary role


Layer 3 Tunneling

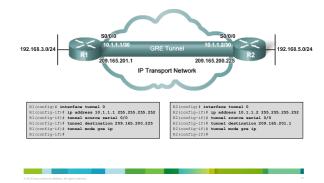
- There are 2 popular site-to-site tunneling protocols:
 - Cisco Generic Routing Encapsulation (GRE)
 - IP Security Protocol (IPsec)
- · When should you use GRE and / or IPsec?


Generic Routing Encapsulation (GRE)

- GRE can encapsulate almost any other type of packet.
- Uses IP to create a virtual point-to-point link between Cisco routers
- $-\,$ Supports multiprotocol (IP, CLNS, \ldots) and IP multicast tunneling (and therefore routing protocols)
- Best suited for site-to-site multiprotocol VPNs
- RFC 1702 and RFC 2784

Optional GRE Extensions

- GRE can optionally contain any one or more of these fields:
 - Tunnel checksum
 - Tunnel key
 - Tunnel packet sequence number
- GRE keepalives can be used to track tunnel path status.

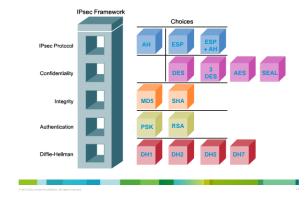

Generic Routing Encapsulation (GRE)

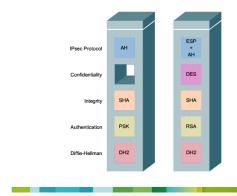
- · GRE does not provide encryption!
- It can be monitored with a protocol analyzer.
- · However, GRE and IPsec can be used together.
- IPsec does not support multicast / broadcast and therefore does not forward routing protocol packets.
 - However IPsec can encapsulate a GRE packet that encapsulates routing traffic (GRE over IPsec).

Five Steps to Configuring a GRE Tunnel

- Create a tunnel interface: interface tunnel 0
- 2. Assign the tunnel an IP address.
- Identify the source tunnel interface: tunnel source
- 4. Identify the tunnel destination: tunnel destination
- (Optional) Identify the protocol to encapsulate in the GRE tunnel: tunnel mode gre ip
 - By default, GRE is tunneled in an IP packet.

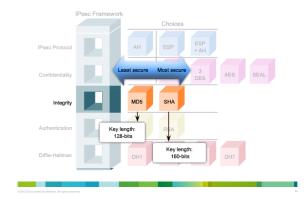
Five Steps to Configuring a GRE Tunnel


GRE Tunnel Example 10.1.1.0 Branch A 10.1.10.0 Central A 10.2.1.0 192.168.2.1 192.168.1.1 BranchA# show running-config interface tunnel 100 description VPN connection back to central A ip address 10.1.10.2 255.255.255.25 no ip directed broadcast tunnel source 192.168.2.1 tunnel destination 192.168.1.1 tunnel mode gre !

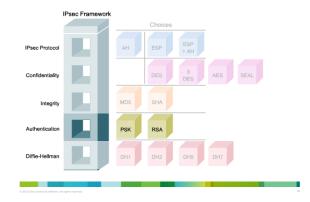

IPsec - Internet Protocol Security

- A "framework" of open standards developed by the IETF to create a secure tunnel at the network (IP) layer.
 - It spells out the rules for secure communications.
 - RFC 2401 RFC 2412
- IPsec is not bound to any specific encryption or authentication algorithms, keying technology, or security algorithms.
- IPsec allows newer and better algorithms to be implemented without patching the existing IPsec standards.

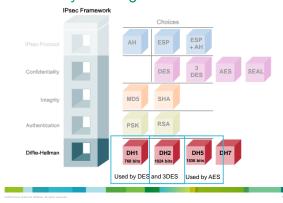
IPsec Protocol Framework



IPsec Protocol Framework

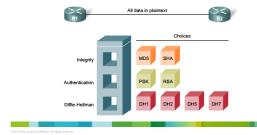


Confidentiality IPsec Framework Choices Least secure Most secure Confidentiality DES 3 DES AES SEAL Key length: 128-bits 128-bits 129-bits 190-bits 160-bits 160-bit


Integrity

Authentication

Secure Key Exchange

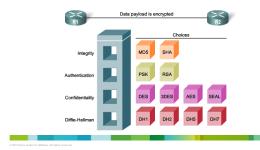

IPsec Framework Protocols

- · IPsec uses two main protocols to create a security framework:
 - AH: Authentication Header
- ESP: Encapsulating Security Payload

© 2012 Cisco and/or its affiliates. All rights reserved.

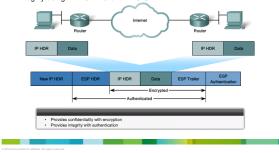
Authentication Header (AH)

- AH provides authentication and optional replay-detection services.
 - It authenticates the sender of the data.
 - AH operates on protocol number 51.
 - AH supports the HMAC-MD5 and HMAC-SHA-1 algorithms.

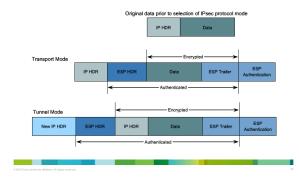


Authentication Header (AH)

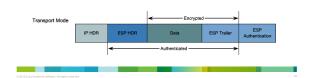
- AH does not provide confidentiality (encryption).
- It is appropriate to use when confidentiality is not required or permitted.
- All text is transported unencrypted.
- It only ensures the origin of the data and verifies that the data has not been modified during transit.
- If the AH protocol is used alone, it provides weak protection.
- AH can have problems if the environment uses NAT.


Encapsulating Security Payload (ESP)

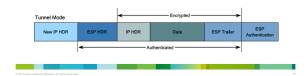
- ESP provides the same security services as AH (authentication and integrity) <u>AND</u> encryption service.
 - It encapsulates the data to be protected.
 - It operates on protocol number 50.


Encapsulating Security Payload (ESP)

- · ESP can also provide integrity and authentication.
 - First, the payload is encrypted using DES (default), 3DES, AES, or SEAL.
 - Next, the encrypted payload is hashed to provide authentication and data integrity using HMAC-MD5 or HMAC-SHA-1.


Transport Mode and Tunnel Mode

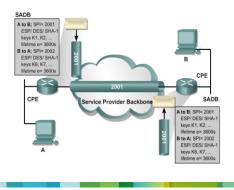
• ESP and AH can be applied to IP packets in two different modes.


Transport Mode

- Security is provided only for the Transport Layer and above.
- It protects the payload but leaves the original IP address in plaintext.
- ESP transport mode is used between hosts.
- Transport mode works well with GRE, because GRE hides the addresses of the end devices by adding its own IP.

Tunnel Mode

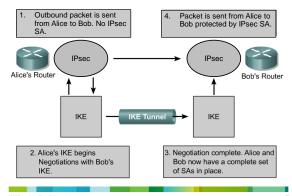
- Tunnel mode provides security for the complete original IP packet.
 - The original IP packet is encrypted and then it is encapsulated in another IP packet (IP-in-IP encryption).
- ESP tunnel mode is used in remote access and site-to-site implementations.


Key Exchange

- The IPsec VPN solution:
 - Negotiates key exchange parameters (IKE).
 - Establishes a shared key (DH).
 - Authenticates the peer.
 - Negotiates the encryption parameters.
- The negotiated parameters between two devices are known as a security association (SA).

Security Associations (SAs)

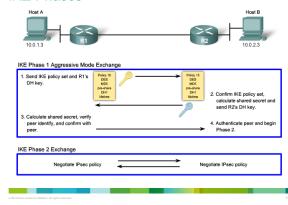
- SAs represent a policy contract between two peers or hosts, and describe how the peers will use IPsec security services to protect network traffic.
- SAs contain all the security parameters needed to securely transport packets between the peers or hosts, and practically define the security policy used in IPsec.


SA Security Parameters

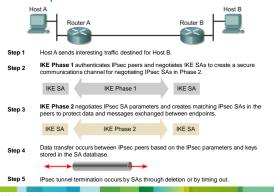
IKE - Internet Key Exchange

- IKE helps IPsec securely exchange cryptographic keys between distant devices.
 - Combination of the ISAKMP and the Oakley Key Exchange Protocol.
- Key Management can be preconfigured with IKE (ISAKMP) or with a manual key configuration.
- IKE and ISAKMP are often used interchangeably.
- · The IKE tunnel protects the SA negotiations.
- After the SAs are in place, IPsec protects the data that Alice and Bob exchange.

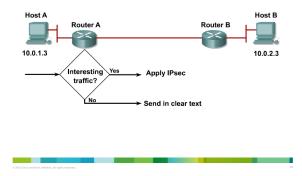
How IPsec uses IKE


IKE - Internet Key Exchange

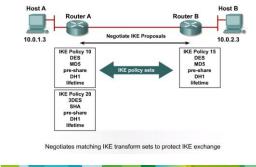
- There are two phases in every IKE negotiation
- Phase 1 (Authentication)
- Phase 2 (Key Exchange)
- IKE negotiation can also occur in:
- Main Mode
- Aggressive mode
- The difference between the two is that Main mode requires the exchange of 6 messages while Aggressive mode requires only 3 exchanges.


IKE Main Mode Phases

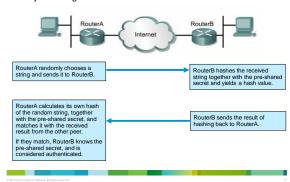
- · IKE Phase One:
 - Negotiates an IKE protection suite.
- Exchanges keying material to protect the IKE session (DH).
- Authenticates each other.
- Establishes the IKE SA.
- Main Mode requires the exchange of 6 messages while Aggressive mode only uses 3 messages.
- · IKE Phase Two:
 - Negotiates IPsec security parameters, known as IPsec transform sets.
- Establishes IPsec SAs.
- Periodically renegotiates IPsec SAs to ensure security.
- Optionally performs an additional DH exchange.


IKE Phases

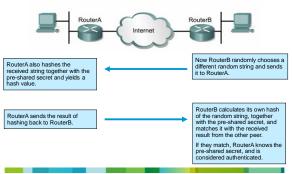
Five Steps of IPsec



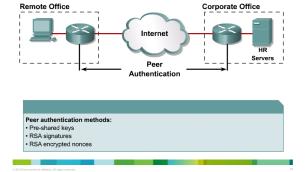
Step 1 – Interesting Traffic


Step 2 - IKE Phase 1

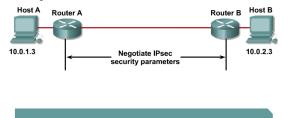
IKE Policy Negotiation


Step 2 - IKE Phase 1

DH Key Exchange

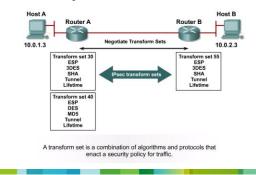

Step 2 - IKE Phase 1

DH Key Exchange

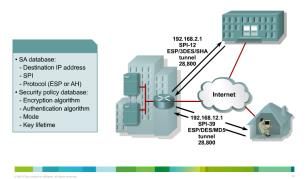

Step 2 - IKE Phase 1

Peer Authentication

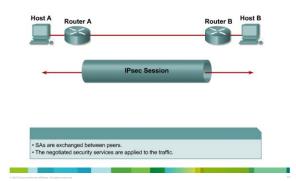
Step 3 - IKE Phase 2


IPsec Negotiation

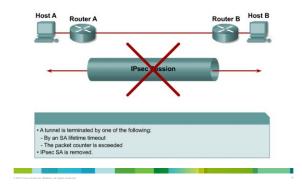
Negotiates IPsec security parameters and IPsec transform sets
 Establishes IPsec SAs
 Periodically renegotiates IPsec SAs to ensure security
 Optionally, performs an additional Diffie-Hellman exchange


Step 3 – IKE Phase 2

Transform Set Negotiation


Step 3 – IKE Phase 2

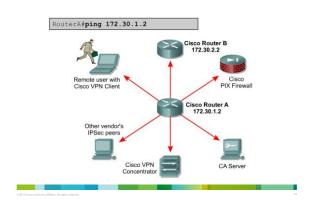
Security Associations


Step 4

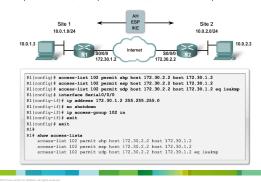
IPsec Session

Step 5

Tunnel Termination



IPsec Tasks

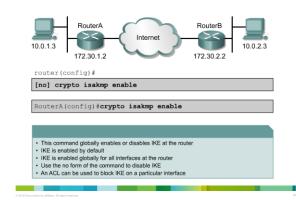

- Ensure that ACLs configured on the interface are compatible with IPsec configuration.
- Create an IKE policy to determine the parameters that will be used to establish the tunnel.
- 3. Configure the IPsec transform set which defines the parameters that the IPsec tunnel uses.
 - The set can include the encryption and integrity algorithms.
- 4. Create a crypto ACL.
 - The crypto ACL defines which traffic is sent through the IPsec tunnel and protected by the IPsec process.
- 5. Create and apply a crypto map.
 - The crypto map groups the previously configured parameters together and defines the IPsec peer devices.
 - The crypto map is applied to the outgoing interface of the VPN device.

Ensure the Network Works

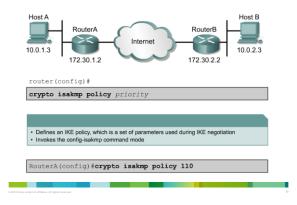
Task 1: Ensure ACLs are Compatible

ESP = protocol # 50, AH = protocol # 51, ISAKMP = UDP port 500

Task 2: Configure IKE

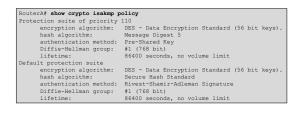

- Creating a plan in advance is mandatory to configure IPsec encryption correctly to minimize misconfiguration.
- · Determine the following policy details:
- Key distribution method
- Authentication method
- IPsec peer IP addresses and hostnames
- IKE phase 1 policies for all peers
- Encryption algorithm, Hash algorithm, IKE SA lifetime
- · Goal: Minimize misconfiguration.

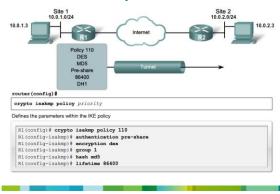
IKE Phase 1 Policy Parameters


Parameter	Strong	Stronger
Encryption Algorithm	DES	3-DES or AES
Hash Algorithm	MD5	SHA-1
Authentication Method	Pre-share	RSA Encryption RSA Signature
Key Exchange	D-H Group 1	D-H Group 2 or D-H 5
IKE SA Lifetime	86400 seconds	less than 86400 seconds

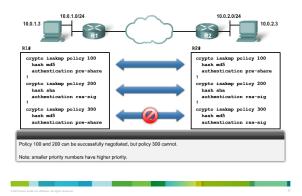
Parameters		R2 Site	R3 Office
Key distribution method	Manual or ISAKMP	ISAKMP	ISAKMP
Encryption algorithm	DES or 3DES	DES	DES
Hash algorithm	MD5 or SHA-1	SHA-1	SHA-1
Authentication method	Pre-share or RSA	Pre-Share	Pre-Share
Key exchange	D-H Group 1 or 2	Group 1	Group 1
IKE SA Lifetime	86400 seconds or less	86400	86400
	00400 seconds of less	86400	

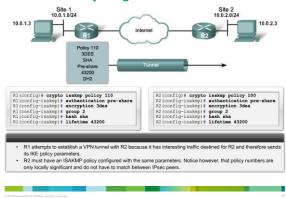
Enable IKE

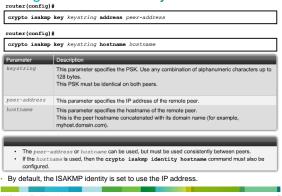

Create an IKE Policy

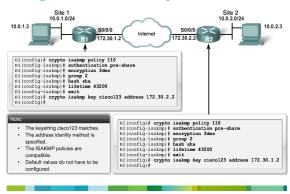

Default ISAKMP Settings

Parameter	Keyword	Accepted Values	Default Value	Description
encryption	des 3des aes aes 192 aes 256	56-bit Data Encryption Standard Triple DES 128-bit AES 192-bit AES 256-bit AES	des	Message encryption algorithm
hash	sha md5	SHA-1 (HMAC variant) MD5 (HMAC variant)	sha	Message integrity (Hash) algorithm
authentication	pre-share rsa-encr rsa-sig	pre-shared keys RSA encrypted nonces RSA signatures	rsa-sig	Peer authentication method
group	1 2 5	768-bit Diffie-Hellman (DH) 1024-bit DH 1536-bit DH	1	Key exchange parameters (DF group identifier)
lifetime	seconds	Can specify any number of seconds	86,400 sec (one day)	ISAKMP-established SA lifetime

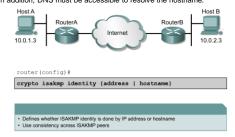

Default ISAKMP Settings


Create an IKE Policy


ISAKMP Policy Negotiation


ISAKMP Policy Negotiation

Configure Pre-Shared Keys



Configure Pre-Shared Keys

Configure ISAKMP Identity

- To use the hostname parameter, configure the crypto isakmp identity hostname global configuration mode command.
 - In addition, DNS must be accessible to resolve the hostname.

Verify IKE Configuration

RouterA# show crypto isakmp policy
Protection suite of priority 110
encryption algorithm:
hesh algorithm:
authentication method:
Diffie-Hellnan group:
Diffei-Hellnan group:
DES - Data Encryption Standard (56 bit keys).
Befault protection suite
encryption algorithm:
hash algorithm:
Authentication method:
DES - Data Encryption Standard (56 bit keys).
Secure Hash Standard
authentication method:
Rivest-Shamir-Adleman Signature
Diffie-Hellnan group:
1 (768 bit)
1 (768 bit)
1 (86400 seconds, no volume limit

© 2012 Cisco and/or its affiliates. All rights reserved

Task 3: Configure the Transform Sets

- · Determine the following policy details:
 - IPsec algorithms and parameters for optimal security and performance
 - Transforms sets
 - IPsec peer details
 - IP address and applications of hosts to be protected
 - Manual or IKE-initiated SAs
- · Goal: Minimize misconfiguration.

IPsec Transforms Supported in IOS

• Cisco IOS software supports the following IPsec transforms:

CentralA(config)# crypto ipsec transform-set transform-set-name ?

ah-md5-hmac AH-HNAC-MD5 transform

asp-3des ESP transform using 3DES(EDE) cipher (168 bits)

esp-des ESP transform using DES cipher (56 bits)

esp-md5-hmac ESP transform using IMAC-MD5 auth

esp-md1-hmac ESP transform using IMAC-MBA auth

esp-null ESP transform w/o cipher

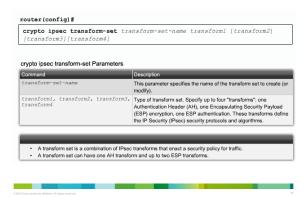
Note:

esp-md5-hmac and esp-sha-hmac provide more data integrity.

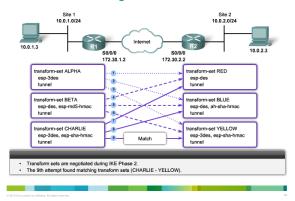
They are compatible with NAT/PAT and are used more frequently than ${\bf ah\text{-}md5\text{-}hmac}$ and ${\bf ah\text{-}sha\text{-}hmac}$.

IPsec Policy Example

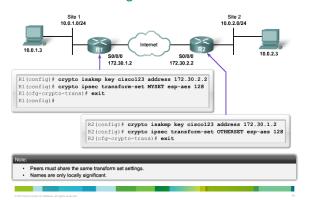
Policy	Host A	Host B
Transform set	ESP-DES, Tunnel	ESP-DES, Tunnel
Peer hostname	RouterB	RouterA
Peer IP address	172.30.2.2	172.30.1.2
Hosts to be encrypted	10.0.1.3	10.0.2.3
Traffic (packet) type to be encrypted	TCP	TCP
SA establishment	ipsec-isakmp	ipsec-isakmp


Specific IPsec show Commands

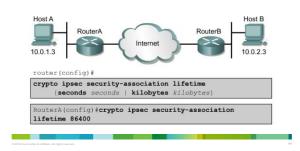
RouterAf show crypto isakmp policy
Default protection suite
encryption algorithm: DES - Data Encryption Standard (56 bit keys)
hash algorithm: Secure Hash Standard
authentication method: Rivest-Shamir-Adleman Signature
Diffie-Hellnam Group: #1 (768 bit)
lifetime: 86400 seconds, no volume limit


RouterAf show crypto map
Crypto Map "MYMAP" 10 ipsec-isakmp
Peer = 172.30.2.2
Extended I7 access list 102
access-list 102 permit ip host 172.30.1.2 host 172.30.2.2
Current peer: 172.30.2.2
Security association lifetime: 4608000 kilobytes/3600 seconds
FPS (Y/N): N
Transform sets={ MY-SET, }

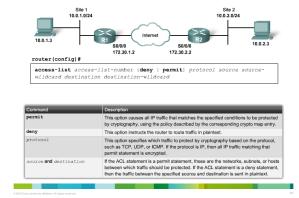
RouterA# show crypto ipsec transform-set MY-SET
Transform set MY-SET: { esp-des }
will negotiate = { Tunnel, },


Configure Transform Sets

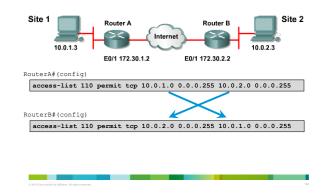
Transform Set Negotiation

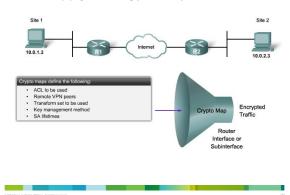


Transform Set Negotiation

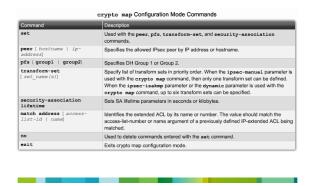


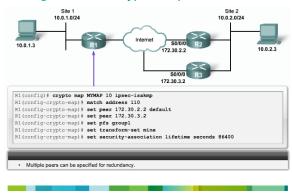
Configure Security Association Lifetimes

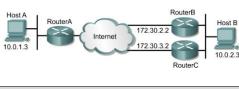

- Configures global IPsec lifetime values used when negotiating IPsec security associations.
- · IPsec SA lifetimes are negotiated during IKE phase 2.


Task 4: Configure Crypto ACLs

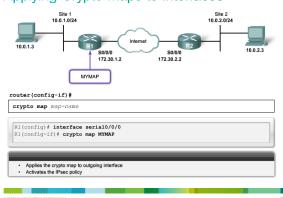

Configure Symmetrical Peer Crypto ACL


Task 5: Apply the Crypto Map

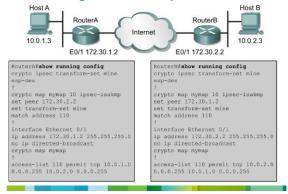

Configure IPsec Crypto Maps


Configure IPsec Crypto Maps

Configure IPsec Crypto Maps



Example Crypto Map Commands



RouterA(config) # crypto map MYMAP 110 ipsec-isakmp
RouterA(config-crypto-map) # match address 110
RouterA(config-crypto-map) # set peer 172.30.2.2
RouterA(config-crypto-map) # set peer 172.30.3.2
RouterA(config-crypto-map) # set transform-set MINE
RouterA(config-crypto-map) # set security-association lifetime 86400

Applying Crypto Maps to Interfaces

IPsec Configuration Examples

Verify IPsec

Show Command	Description	
show crypto map	Displays configured crypto maps	
show crypto isakmp policy	Displays configured IKE policies	
show crypto ipsec sa	Displays established IPsec tunnels	
show crypto ipsec transform-set	Displays configured IPsec transform sets	
debug crypto isakmp	Debugs IKE events	
debug crypto ipsec	Debugs IPsec events	

clear commands

· Clears IPsec Security Associations in the router database.

Router#

clear crypto sa
clear crypto sa peer <IP address | peer name>
clear crypto sa map <map name>
clear crypto sa entry <destination-address protocol spi>

View Policy

View Defined Sets

Display Phase 1 SA

- QM_IDLE (quiescent state) indicates that an ISAKMP SA exists but is idle.
- The router will remain authenticated with its peer and may be used for subsequent quick mode (QM) exchanges.

dst	src	state	conn-id	slot
172.30.2.2	172.30.1.2	OM IDLE	47	5

View Crypto IPsec SA

View Configured Crypto Maps


```
RouterAf show crypto map
Crypto Map "MYMAP" 10 ipsec-isakmp
Peer = 172.30.2.2

Extended IP access list 102
    access-list 102 permit ip host 172.30.1.2 host 172.30.2.2

Current peer: 172.30.2.2

Security association lifetime: 4608000 kilobytes/3600 seconds
PFS (YAN): N
Transform sets={ MINE, }
```

2012 Claco and/or bs affiliates. All rights reserved.

Crypto System Error Messages for ISAKMP

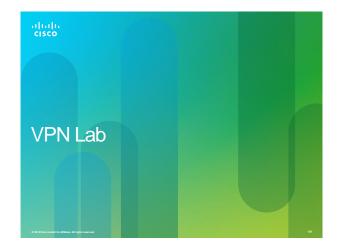
- To display debug messages about all IPsec actions, use the global command debug crypto ipsec.
- To display debug messages about all ISAKMP actions, use the global command debug crypto isakmp.

Crypto System Error Messages for ISAKMP

• ISAKMP SA with the remote peer was not authenticated.

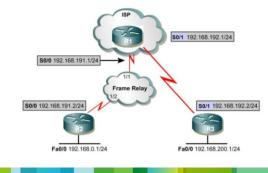
%CRYPTO-6-IKMP_SA_NOT_AUTH: Cannot accept Quick Mode exchange from %15i if SA is not authenticated!

 ISAKMP peers failed protection suite negotiation for ISAKMP.

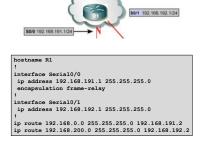

\$CRYPTO-6-IKMP_SA_NOT_OFFERED: Remote peer %15i responded with attribute [chars] not offered or changed

Crypto System Error Messages for ISAKMP

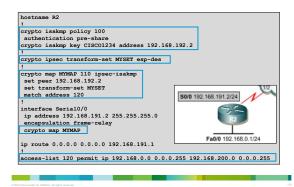
- This is an example of the Main Mode error message.
- The failure of Main Mode suggests that the Phase I policy does not match on both sides.


IdGOh: ISARMP (0:1): atts are not acceptable. Next payload is 0 1dGOh: ISARMP (0:1); no offers accepted: IdGOh: ISARMP (0:1): SA not acceptable! IdGOh: CRITYO-6-ITMP MODE PAILURE: Processing of Main Mode failed with peer at 150.150.150.1

- Verify that the Phase I policy is on both peers and ensure that all the attributes match.
 - Encryption: DES or 3DES
 - Hash: MD5 or SHA
 - Diffie-Hellman: Group 1 or 2
- Authentication: rsa-sig, rsa-encr or pre-share



VPN Lab Example


Configuring a Site-to-Site IPsec VPN Using Pre-Shared Keys

ISP Router

Lab Example

Lab Example

```
hostname R3

| crypto isakmp policy 100
| authentication pre-share | crypto isakmp key CISCO1234 address 192.168.191.2 | crypto isakmp key CISCO1234 address 192.168.191.2 | crypto isakmp key CISCO1234 address 192.168.191.2 | crypto map MYMAP 110 ipsec-isakmp set peer 192.168.191.2 | set transform-set MYSET | match address 120 | interface SerialO/1 | ip address 192.168.192.2 255.255.255.0 | clockrate 56000 | crypto map MYMAP | ip route 0.0.0.0.0.0.0.192.168.192.1 | ip route 0.0.0.0.0.0.0.0.0.192.168.192.1 | cccess-list 120 permit ip 192.168.200.0 0.0.0.255 | 192.168.0.0 0.0.0.255 |
```

Verify the VPN Configuration

- · Clear the crypto security associations.
 - R2# clear crypto sa
- R2# clear crypto isakmp

Verify the VPN Configuration

· Verify that the IPSEC SAs have been cleared.

```
R2# sho crypto ipsec sa
interface: SerialO()
Crypto map tags: MYMAP, local addr. 192.168.191.2

local ident (addr/mask/prot/port): (192.168.00.0/255.255.255.0/0/0)
remote ident (addr/mask/prot/port): (192.168.00.0/255.255.255.0/0/0)
FREMUT, flaga=forigin is acl,)

#pkts encaps: 0, #pkts encrypt: 0, #pkts digest 0
#pkts encaps: 0, #pkts decrypt: 0, #pkts verify 0
#pkts compressed: 0, #pkts decompressed: 0
#pkts ont compressed: 0, *pkts oncy failed: 0, *pkts decompressed: 0
#pkts and crypto endpt: 192.168.191.2, remote crypto endpt:: 192.168.192.2
path mtu 1500, media mtu 1500, media mtu 1500 current outbound spi: 0
```

Verify the VPN Configuration

 Initiate an extended ping from each respective LAN, to test the VPN configuration.

```
R2# ping
Protocol [ip]:
Target IP address: 192.168.200.1
Repeat count [5]:
Datagram size [100]:
Extended commands [n]: y
Extended commands [n]: y
Extended commands [n]: y
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.168.200.1, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 132/135/136 ms
```

Verify the VPN Configuration

· After the extended ping, verify IPSEC SAs.

```
R2# sho crypto ipsec sa

interface: SerialO/0
    Crypto map tag: MYMAP, local addr. 192.168.191.2

local ident (addr/mask/prot/port): (192.168.191.2

local ident (addr/mask/prot/port): (192.168.200.0/255.255.255.0/0/0)
    current peer: 192.168.192.2

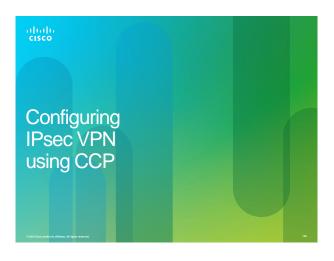
FERMIT. flacae ionidin is acl.)

**phts encaps: 4, **phts encrypt: 4, **phts digest 0

**phts decaps: 4, **phts decorpriseased: 0

**phts compressed: 0, **phts decompressed: 0

**pts: compressed: 0, **phts decompressed: 0

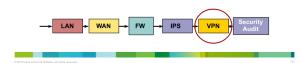

**send errors 1, **recv errors 0

local crypto endpt.: 192.168.191.2, remote crypto endpt.:

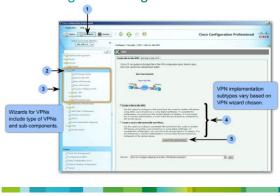
192.168.192.2

path mtu 1500, media mtu 1500

current outbound spi: 126912DC
```



CCP 'Wizards'

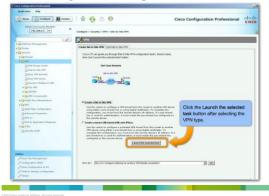
- Other intelligent Cisco wizards are available in CCP for these three tasks:
- Auto detecting misconfiguration and proposing fixes.
- Providing strong security and verifying configuration entries.
- Using device and interface-specific defaults.



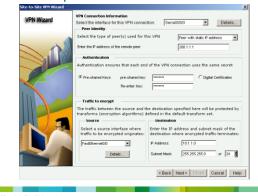
CCP 'Wizards'

- · Examples of CCP wizards include:
 - Startup wizard for initial router configuration
 - LAN and WAN wizards
 - Policy-based firewall and access-list management to easily configure firewall settings based on policy rules
 - IPS wizard
- One-step site-to-site VPN wizard
- One-step router lockdown wizard to harden the router

VPN Configuration Page

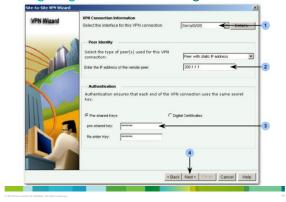

VPN Configuration Page

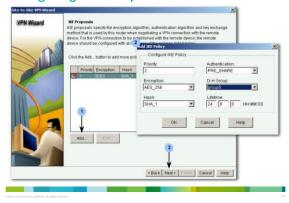
Site-to-Site VPN Components


- VPN wizards use two sources to create a VPN connection:
- User input during the step-by-step wizard process
- Preconfigured VPN components
- CCP provides some default VPN components:
- IPsec transform set for Quick Setup wizard
- Other components are created by the VPN wizards:
 Two IKE policies
- Some components (for example, PKI) must be configured before the wizards can be used.

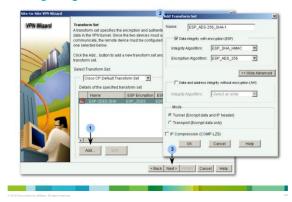
VPN Configuration Page

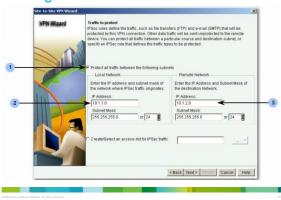
Quick Setup

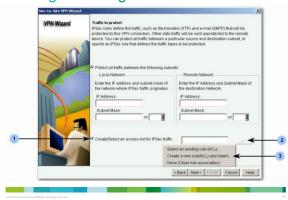

Quick Setup

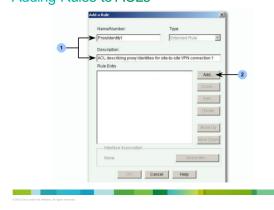

Step-by-Step Setup

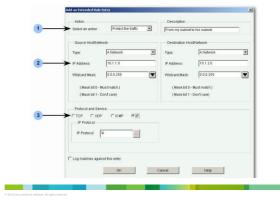
- Multiple steps are required to configure the VPN connection:
- Defining connection settings: Outside interface, peer address, authentication
- Defining IKE proposals: Priority, encryption algorithm, HMAC, authentication type, Diffie-Hellman group, lifetime
- Defining IPsec transform sets: Encryption algorithm, HMAC, mode of operation, compression
- Defining traffic to protect: Single source and destination subnets, ACL
- Reviewing and completing the configuration

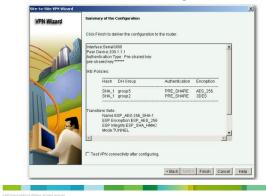

Configuring Connection Settings

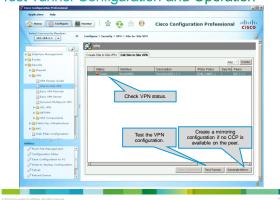

Configuring IKE Proposals

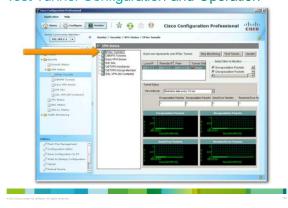

Configuring the Transform Set

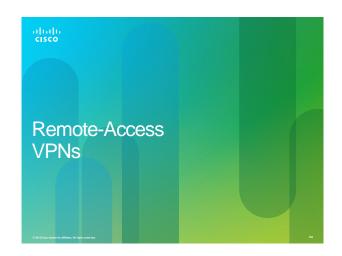

Defining Source and Destination Subnet


Defining Interesting Traffic

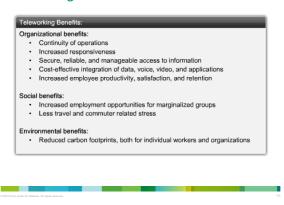

Adding Rules to ACLs


Configuring a New ACL Rule Entry

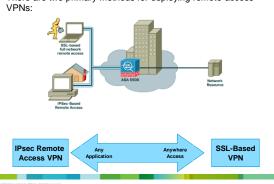

Review the Generated Configuration



Test Tunnel Configuration and Operation

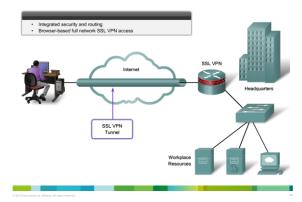


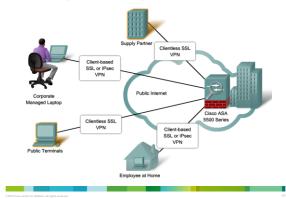
Test Tunnel Configuration and Operation



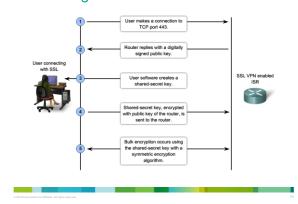
Teleworking Benefits

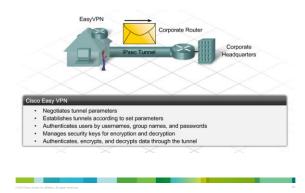
Remote-Access Solutions


 There are two primary methods for deploying remote-access VPNs:

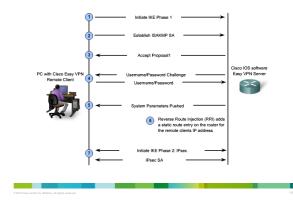

Remote-Access Solutions

	SSL	IPsec
Applications	Web-enabled applications, file sharing, e-mail	All IP-based applications
Encryption	Moderate Key lengths from 40 bits to 128 bits	Stronger Key lengths from 56 bits to 256 bits
Authentication	Moderate One-way or two-way authentication	Strong Two-way authentication using shared secrets or digital certificates
Ease of Use	Very high	Moderate Can be challenging to nontechnica users
Overall Security	Moderate Any device can connect	Strong Only specific devices with specific configurations can connect


SSL VPN


Clientless, Thin Client, or Full Client

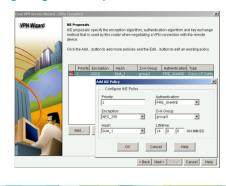
Establishing SSL Session

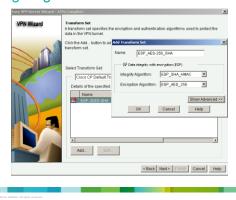

Cisco Easy VPN

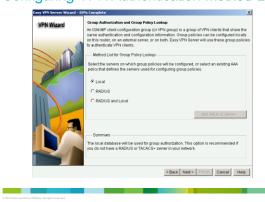
Cisco Easy VPN Components

- Cisco Easy VPN Server A Cisco IOS router or Cisco PIX / ASA Firewall acting as the VPN head-end device in site-to-site or remote-access VPNs.
- · Cisco Easy VPN Remote A Cisco IOS router or Cisco PIX / ASA Firewall acting as a remote VPN client.
- Cisco Easy VPN Client An application supported on a PC used to access a Cisco VPN server.

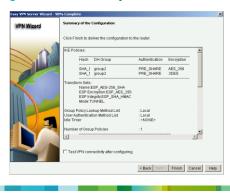
Cisco Easy VPN Exchange


Configuring Easy VPN Server

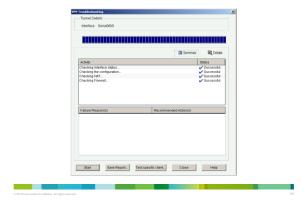

Configuring Easy VPN Server Physical Interface

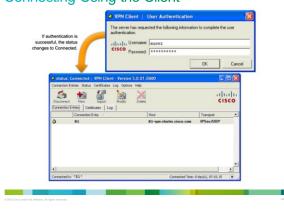

Configuring IKE Proposals

Configuring Transform Set


Configuring VPN Authentication Method List

Configuring VPN Authentication Group Policy


Configuration Summary


Edit Easy VPN Server

Easy VPN Server Test

Connecting Using the Client

